Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Public Health ; 11: 1136623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908432

RESUMO

Objectives: Radioactivity monitoring around nuclear facilities is crucial to provide important baseline data for effective detection of radioactive leakage to the environment. We aim to establish a baseline study for monitoring radioactive levels of 90Sr and 137Cs around Sammen Nuclear Power Plant (SNPP) and to assess their associated health impact on surrounding residents. Methods: In this study, we collected water and food samples around the SNPP from 2011 to 2020 and determined for 90Sr and 137Cs activity concentrations. We statistically analyzed the temporal trends of 90Sr and 137Cs and evaluated their radiation exposure to the local residents. Results: During this period, the activity concentrations of 90Sr and 137Cs varied within 1.2-9.9 mBq/L and 0.10-7.6 mBq/L in water, and 0.037-1.3 Bq/kg and 0.011-0.45 Bq/kg in food, respectively, with no significant seasonal variation trend. Conclusions: All reported activity concentrations of 90Sr and 137Cs were significantly lower than the recommended value of WHO and Chinese national standards. There is no indication of notable radioactive release into the study area due to the operation of SNPP during 2018-2020. The annual effective doses (AEDs) from the ingestion of 90Sr and 137Cs in water and food were well below the international permissible limits, indicating the radiation exposure around SNPP during 2011-2020 was kept at a safe level.


Assuntos
Centrais Nucleares , Monitoramento de Radiação , Humanos , Água , China
3.
Front Public Health ; 10: 1019563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388359

RESUMO

Background: The hazards of kitchen particles have attracted social attention, but their distribution characteristics and risk assessment are rarely reported. Objective: To explore the temporal and spatial distribution characteristics of kitchen particles, analyze the variations in characteristics of number concentration (NC), mass concentration (MC), surface area concentration (SAC), and particle size distribution, provide reference indexes for evaluating worker exposure, evaluate the risk of kitchen particles, as well as suggest improvements and control measures. Patients and methods: Different cooking posts in a Chinese hotel kitchen were selected to monitor exposure to particles, explore the temporal and spatial distribution characteristics of NC, MC, and SAC of particles in the cooking post, analyze changes in the particle size, compare the individual exposure of particles between the cooking and steaming posts, and analyze the correlation between NC, MC, and SAC. Risk assessment of kitchen ultrafine particles was performed using a Nanotool. Results: The sizes and fluctuation ranges of NC10 - 500nm at cooking posts during lunch preparation and at peak periods were significantly higher than those at the end of the lunch period. The mean values of MC10 - 500nm during the lunch preparation peak and ending periods were 0.149, 0.229, and 0.151 mg m-3, respectively. The mean values of SAC10 - 500nm were 225, 961, and 466 µm2·cm-3, respectively. The mode diameter of exposed particles at the cooking post [(34.98 ± 2.33) nm] was higher than that at the steaming post [(30.11 ± 2.17) nm] (P < 0.01). The correlation between SAC10 - 500nm and NC10 - 500nm (r = 0.703) was the strongest. Nanotool gave a hazard rating ratio, exposure rating ratio, and risk ratio of 0.75. Conclusion: The sizes of the NC, MC, and SAC of the particles at the cooking post were related to the kitchen operations. Since kitchen particles are of high exposure and risk levels, protective measures should be formulated and implemented to deal with them safely.


Assuntos
Culinária , Material Particulado , Tamanho da Partícula , Material Particulado/análise , Medição de Risco , China
4.
Inorg Chem ; 61(46): 18335-18339, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346707

RESUMO

The generation and regulation of chirality are closely related to the origin of life. Using achiral precursors to spontaneously build chiral MOFs remains a major challenge. Here, a method to synthesize chiral MOFs from achiral precursors by utilizing chiral fragments was achieved. The transformation from chiral fragments of 1 to chiral frameworks of 2 and 3 was realized by modifying the substituents, and the enantiomer resolution of 3-P41212 and 3-P43212 was achieved by d/l camphoric acid. 3 was then further studied in applications.


Assuntos
Estruturas Metalorgânicas
5.
Front Public Health ; 10: 1003203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211658

RESUMO

Objective: There is no unified standard for measuring workplace non-Gaussian noise (known as complex noise) exposure. This study aimed to develop a draft guideline for measuring workplace non-Gaussian complex noise exposure based on noise temporal structure adjustment. Methods: Noise exposure level, e.g., the A-weighted sound pressure level normalized to a nominal 8-h working day (LEX,8h), was adjusted using the temporal structure (expressed by kurtosis) of noise. Noise waveform analysis or the instrument's direct reading was used. Results: The framework of the draft guideline included measurement metrics, the protocol using kurtosis to adjust LEX,8h, technical requirements for measuring instruments, measurement steps, data analysis, and measurement recording. Conclusion: The draft guideline could provide a basis for accurately measuring workers' exposure to non-Gaussian noise.


Assuntos
Perda Auditiva Provocada por Ruído , Ruído Ocupacional , China , Humanos , Local de Trabalho
6.
Front Psychol ; 13: 870312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496243

RESUMO

Objective: There is little literature on the validity of kurtosis-adjusted noise energy metrics in human studies. Therefore, this study aimed to validate the application of cumulative noise exposure (CNE) adjusted by kurtosis in evaluating occupational hearing loss associated with non-Gaussian noise among manufacturing workers. Methods: A cross-sectional survey was conducted on 1,558 manufacturing workers exposed to noise from five industries to collect noise exposure and hearing loss data. Both CNE and kurtosis-adjusted CNE (CNE') were collapsed into 2-dB(A)∙year bins, and the mean noise-induced permanent threshold shifts at 3, 4, and 6 kHz (NIPTS346) in each bin were calculated. The contributions of CNE and CNE' to noise-induced hearing loss (NIHL) were compared using the multiple linear regression. The degree of overlap of two linear regression equations (i.e., between CNE' and NIPTS346 for non-Gaussian noise and between CNE and NIPTS346 for Gaussian noise) was used to evaluate the validity of the CNE' using a stratified analysis based on age and sex. Results: Multiple linear regression models showed that after kurtosis adjustment, the standardized regression coefficient of CNE increased from 0.230 to 0.255, and R 2 increased from 0.147 to 0.153. The linear relationship between NIPTS346 and CNE' or CNE showed that the regression line of non-Gaussian noise was closer to that of Gaussian noise when using CNE' than using CNE. The mean difference in NIPTS346 between the equations of non-Gaussian noise and Gaussian noise was significantly reduced from 4.32 to 1.63 dB HL after kurtosis adjustment (t = 12.00, p < 0.001). Through a stratified analysis, these significant decreases were observed in male and female workers, and workers aged ≥30 years old. Conclusion: As a noise exposure metric combining noise energy and temporal characteristics, the kurtosis-adjusted-CNE metric was more effective than CNE alone in assessing occupational hearing loss among manufacturing workers in non-Gaussian noise environment. However, more studies are needed to verify the validity of the kurtosis-adjusted-CNE metric.

7.
Ear Hear ; 43(6): 1881-1892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442928

RESUMO

OBJECTIVES: Studies have shown that in addition to energy, kurtosis plays an important role in the assessment of hearing loss caused by complex noise. The objective of this study was to investigate how to use noise recordings and audiometry collected from workers in industrial environments to find an optimal kurtosis-adjusted algorithm to better evaluate hearing loss caused by both continuous noise and complex noise. DESIGN: In this study, the combined effects of energy and kurtosis on noise-induced hearing loss (NIHL) were investigated using data collected from 2601 Chinese workers exposed to various industrial noises. The cohort was divided into three subgroups based on three kurtosis (ß) levels (K 1 : 3 ≤ ß ≤ 10, K 2 : 10 <ß ≤ 50, and K 3 : ß > 50). Noise-induced permanent threshold shift at test frequencies 3, 4, and 6 kHz (NIPTS 346 ) was used as the indicator of NIHL. Predicted NIPTS 346 was calculated using the ISO 1999 model for each participant, and the actual NIPTS was obtained by correcting for age and sex using non-noise-exposed Chinese workers (n = 1297). A kurtosis-adjusted A-weighted sound pressure level normalized to a nominal 8-hour working day (L Aeq,8h ) was developed based on the kurtosis categorized group data sets using multiple linear regression. Using the NIPTS 346 and the L Aeq.8h metric, a dose-response relationship for three kurtosis groups was constructed, and the combined effect of noise level and kurtosis on NIHL was investigated. RESULTS: An optimal kurtosis-adjusted L Aeq,8h formula with a kurtosis adjustment coefficient of 6.5 was established by using the worker data. The kurtosis-adjusted L Aeq,8h better estimated hearing loss caused by various complex noises. The analysis of the dose-response relationships among the three kurtosis groups showed that the NIPTS of K 2 and K 3 groups was significantly higher than that of K 1 group in the range of 70 dBA ≤ L Aeq,8h < 85 dBA. For 85 dBA ≤ L Aeq,8h ≤ 95 dBA, the NIPTS 346 of the three groups showed an obvious K 3 > K 2 > K 1 . For L Aeq,8h >95 dBA, the NIPTS 346 of the K 2 group tended to be consistent with that of the K 1 group, while the NIPTS 346 of the K 3 group was significantly larger than that of the K 1 and K 2 groups. When L Aeq,8h is below 70 dBA, neither continuous noise nor complex noise produced significant NIPTS 346 . CONCLUSIONS: Because non-Gaussian complex noise is ubiquitous in many industries, the temporal characteristics of noise (i.e., kurtosis) must be taken into account in evaluating occupational NIHL. A kurtosis-adjusted L Aeq,8h with an adjustment coefficient of 6.5 allows a more accurate prediction of high-frequency NIHL. Relying on a single value (i.e., 85 dBA) as a recommended exposure limit does not appear to be sufficient to protect the hearing of workers exposed to complex noise.


Assuntos
Perda Auditiva Provocada por Ruído , Ruído Ocupacional , Doenças Profissionais , Exposição Ocupacional , Humanos , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/etiologia , Ruído Ocupacional/efeitos adversos , Audiometria , Modelos Lineares , Exposição Ocupacional/efeitos adversos
8.
Sci Rep ; 12(1): 4945, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322138

RESUMO

To evaluate the impact of the Qinshan Nuclear Power Plant (Qinshan NPP) in normal operation on the surrounding environment and population, the radioactivity levels of drinking water and the ambient environment, as well as the residents' cancer incidence, were continuously monitored for a period of 9 years (2012-2020). All of the gross α and ß radioactivity concentrations in drinking water were less than the WHO recommended values (0.5 Bq/L for gross α and 1 Bq/L for gross ß). The results of ambient environment accumulated dose monitored by thermoluminescent dosimeters (TLDs) indicated that the ambient environment radioactive level around the Qinshan NPP is consistently at natural background radiation levels. The age-dependent annual effective doses due to the ingestion of tap water or exposure to the outdoor ambient environment are lower than the reference dose of 0.1 mSv/year. The corresponding excess risks are at relatively low levels. Thus, the consumption of drinking water and outdoor activities are not expected to give rise to any detectable adverse effects on the health of the public around the Qinshan NPP. For all cancers combined, the age-standardized incidence rate by the Chinese 2000 standard population of the inhabitants living around Qinshan NPP is consistent with that of Zhejiang Province as a whole. Based on current radiation risk estimates, radiation exposure is not a plausible explanation for any excess cancers observed in the vicinity of the Qinshan NPP.


Assuntos
Água Potável , Neoplasias , Monitoramento de Radiação , Radioatividade , Poluentes Radioativos da Água , China/epidemiologia , Água Potável/efeitos adversos , Humanos , Centrais Nucleares , Saúde Pública , Monitoramento de Radiação/métodos , Poluentes Radioativos da Água/efeitos adversos , Poluentes Radioativos da Água/análise
9.
Sci Rep ; 11(1): 20903, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686687

RESUMO

Environmental radioactivity monitoring in the surroundings of nuclear facilities is important to provide baseline data for effective detection in case of any radioactive release in the region. In this work, we report for the first time the long-term monitoring data of 137Cs and 90Sr in environmental and food samples around Qinshan nuclear power plant in 2012-2019. The distribution levels, temporal variations and source terms of 137Cs and 90Sr in the investigated samples were discussed. The annual effective dose (AED) for the local population from the ingestion of foods was also evaluated. Peak values of 90Sr and 137Cs concentrations and 137Cs/90Sr activity ratio were observed in total atmospheric deposition in 2016 and some water and food samples in the following years. This seems to be associated to an additional radioactive input, mostly likely from the operational release of a local facility. This demonstrates that 90Sr and 137Cs, especially the 137Cs/90Sr activity ratio, are sensitive indicators for detecting potential radioactive releases. Nevertheless, overall 90Sr and 137Cs activity concentrations measured during 2012-2019 in this work were at the background levels with average AED far below the internationally permissible limit and recommendation.

10.
China CDC Wkly ; 3(18): 378-382, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-34594888

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: Occupational noise-induced hearing loss (NIHL) has been the second most common occupational disease in China. Noise energy is the main risk factor for occupational NIHL. Evidence shows the temporal structure of noise (as indicated by kurtosis metric) contribute to the development of NIHL. However, the role of the kurtosis metric in evaluating the risk of occupational NIHL associated with complex noise has been rarely reported. WHAT IS ADDED BY THIS REPORT?: Noise temporal structure (as indicated by kurtosis) is an important risk factor for occupational NIHL in addition to noise energy. Kurtosis can be used to quantify complex noise exposure. A combination of noise kurtosis and noise energy can effectively evaluate the risk of occupational hearing loss associated with complex noise. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Considering the effect of noise temporal structure on occupational NIHL, the existing international noise exposure standards (e.g. measurement method and noise exposure limit) for complex noise should be modified based on noise temporal structure. More effort is needed to reduce noise exposure, improve health screening, and monitor occupational NIHL.

11.
Aging (Albany NY) ; 13(19): 23119-23132, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620733

RESUMO

The anticancer effect of zinc oxide nanoparticles (ZnO NPs) largely relies on cellular responses such as alteration of gene expression. Although ZnO NPs have been reported to induce transcriptional changes, the potential of ZnO NPs to affect cellular translatome remains largely unknown. Using ribosome profiling, we demonstrated that the transcription of 78 genes and the translation of 1,448 genes are affected during one hour of ZnO NPs exposure in A549 human lung cancer cells. The mitogen-activated protein kinase (MAPK) pathway is up-regulated upon ZnO NP treatment. The upstream open reading frame (uORF) plays a pervasive role in the induction of up-regulated genes, including TLNRD1 and CCNB1IP1. Knockdown of TLNRD1 or CCNB1IP1 reduces ZnO NP-induced cytotoxicity. Together, our study characterizes the landscape of translational alteration under ZnO NPs treatment and provides potential targets to augment the anticancer effect of ZnO NPs.


Assuntos
Nanopartículas Metálicas/química , Ribossomos/efeitos dos fármacos , Análise de Sequência de RNA/métodos , Óxido de Zinco/farmacologia , Células A549 , Estruturas Genéticas , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/genética , Óxido de Zinco/química
12.
Ear Hear ; 42(6): 1782-1796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34369415

RESUMO

OBJECTIVE: The association of occupational noise-induced hearing loss (NIHL) with noise energy was well documented, but the relationship between occupational noise and noise temporal structure is rarely reported. The objective of this study was to investigate the principal characteristics of the relationship between occupational NIHL and the temporal structure of noise. METHODS: Audiometric and shift-long noise exposure data were collected from 3102 Chinese manufacturing workers from six typical industries through a cross-sectional survey. In data analysis, A-weighted 8-h equivalent SPL (LAeq.8h), peak SPL, and cumulative noise exposure (CNE) were used as noise energy indicators, while kurtosis (ß) was used as the indicator of noise temporal structure. Two NIHL were defined: (1) high-frequency noise-induced hearing loss (HFNIHL) and (2) noise-induced permanent threshold shift at test frequencies of 3, 4, and 6 kHz (noise-induced permanent threshold shift [NIPTS346]). The noise characteristics of different types of work and the relationship between these characteristics and the prevalence of NIHL were analyzed. RESULTS: The noise waveform shape, with a specific noise kurtosis, was unique to each type of work. Approximately 27.92% of manufacturing workers suffered from HFNIHL, with a mean NIPTS346 of 24.16 ± 14.13 dB HL. The Spearman correlation analysis showed that the kurtosis value was significantly correlated with the difference of peak SPL minus its LAeq.8h across different types of work (p < 0.01). For a kurtosis-adjusted CNE, the linear regression equation between HFNIHL% and CNE for complex noise almost overlapped with Gaussian noise. Binary logistic regression analysis showed that LAeq.8h, kurtosis, and exposure duration were the key factors influencing HFNIHL% (p < 0.01). The notching extent in NIPTS at 4 kHz became deeper with the increase in LAeq.8h and kurtosis. HFNIHL% increased most rapidly during the first 10 years of exposure. HFNIHL% with ß ≥ 10 was significantly higher than that with ß < 10 (p < 0.05), and it increased with increasing kurtosis across different CNE or LAeq.8h levels. When LAeq.8h was 80 to 85 dB(A), the HFNIHL% at ß ≥ 100 was significantly higher than that at 10 ≤ ß < 100 or ß < 10 (p < 0.05 and p < 0.01, respectively). CONCLUSIONS: In the evaluation of hearing loss caused by complex noise, not only noise energy but also the temporal structure of noise must be considered. Kurtosis of noise is an indirect metric that is sensitive to the presence of impulsive components in complex noise exposure, and thus, it could be useful for quantifying the risk for NIHL. It is necessary to re-evaluate the safety of permissible exposure limit of 85 dB(A) as noise with a high kurtosis value can aggravate or accelerate early NIHL.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Ruído Ocupacional , Exposição Ocupacional , Audiometria , Estudos Transversais , Surdez/complicações , Perda Auditiva Provocada por Ruído/epidemiologia , Perda Auditiva Provocada por Ruído/etiologia , Humanos , Ruído Ocupacional/efeitos adversos , Exposição Ocupacional/efeitos adversos
13.
J Occup Health ; 63(1): e12257, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34375492

RESUMO

OBJECTIVES: This study aimed to clarify the exposure characteristics and risks of ultrafine particles from the blast furnace process and to provide a reasonable control strategy for protecting the health of workers. METHODS: The blast furnace location of a steelmaking plant was selected as a typical investigation site. A membrane-based sampling system was used to collect ultrafine particles to analyze their morphology and elemental compositions. A real-time system was used to monitor the total number concentration (NC), total respirable mass concentration (MC), surface area concentration (SAC), and size distribution by number. The risk level of ultrafine particles was analyzed using the Stoffenmanager-Nano model. RESULTS: The total NC, total MC, and SAC increased significantly relative to background concentrations after slag releasing started and decreased gradually after the activity stopped. The three highest total concentrations during slag releasing were 3-10 times higher than those of the background or non-activity period. The ultrafine particles were mainly gathered at 10.4 or 40 nm, and presented as lump-like agglomerates. The metal elements (Al and Pt) in the ultrafine particles originated from slag and iron ore. The risk level of the ultrafine particles was high, indicating the existing control measures were insufficient. CONCLUSIONS: The blast furnace workers are at high risk due to exposure to high levels of ultrafine particles associated with working activity and with a bimodal size distribution. The existing control strategies, including engineering control, management control, and personal protection equipment need to be improved.


Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Ferreiros , Exposição Ocupacional/análise , Tamanho da Partícula , Material Particulado/análise , Incêndios , Humanos , Medição de Risco
14.
Sci Rep ; 11(1): 15586, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341422

RESUMO

Ultrafine particles have been increasingly linked to adverse health effects in restaurant workers. This study aimed to clarify the exposure characteristics and risks of ultrafine particles during the cooking process, and to provide a reasonable standard for protecting the workers in the Chinese restaurant. The temporal variations in particle concentrations (number concentration (NC), mass concentration (MC), surface area concentration (SAC), and personal NC), and size distributions by number were measured by real-time system. The hazard, exposure, and risk levels of ultrafine particles were analyzed using the control banding tools. The NC, MC, and SAC increased during the cooking period and decreased gradually to background levels post-operation. The concentration ratios of MC, total NC, SAC, and personal NC ranged from 3.82 to 9.35. The ultrafine particles were mainly gathered at 10.4 and 100 nm during cooking. The exposure, hazard and risk levels of the ultrafine particles were high. These findings indicated that the workers during cooking were at high risk due to exposure to high levels of ultrafine particles associated with working activity and with a bimodal size distribution. The existing control strategies, including engineering control, management control, and personal protection equipment need to be improved to reduce the risk.


Assuntos
Culinária , Exposição Ocupacional/análise , Material Particulado/análise , Restaurantes , Medição de Risco , China , Monitoramento Ambiental , Tamanho da Partícula , Fatores de Tempo
15.
Dalton Trans ; 50(26): 9310-9316, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34132290

RESUMO

The excessive use of fossil energy has caused the CO2 concentration in the atmosphere to increase year by year. MOFs are ideal CO2 adsorbents that can be used in CO2 capture due to their excellent characteristics. Studies of the structure-activity relationship between the small structural differences in MOFs and the CO2 adsorption capacities are helpful for the development of efficient MOF-based CO2 adsorbents. Therefore, a series of pillar-layered MOFs with similar structural and different functional groups were designed and synthesized. The CO2 adsorption tests were carried out at 273 K to explore the relationship between the small structural differences in MOFs caused by different functional groups and the CO2 adsorption capacities. Significantly, compound 6 which contains a pyridazinyl group has a 30.9% increase in CO2 adsorption capacity compared to compound 1 with no functionalized group.

16.
Inorg Chem ; 60(14): 10513-10521, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34170146

RESUMO

The design and development of self-calibrating ratiometric luminescent sensors for the fast, accurate, and sensitive discrimination and determination of pollutants in wastewater is highly desirable for public and environmental health. Herein, a 3D porous Tb(III)-based metal-organic framework (MOF), {[Tb(HL)(H2O)2]·x(solv)}n (1), was facilely synthesized using a urea-functionalized tetracarboxylate ligand, 5,5'-(((1,4-phenylenebis(azanediyl))bis(carbonyl))bis(azanediyl))diisophthalic acid (H4L). The activated framework showed a good water stability in both aqueous solutions at a wide pH range of 2-14 and simulated antibiotic wastewaters. Interestingly, this Tb-MOF exhibited dual luminescence owing to the partial energy transfer from the antenna H4L to Tb3+. More importantly, activated 1 (1a) that was dispersed in water showed a fast, accurate, and highly sensitive discrimination ability toward antibiotics with a good recyclability, discriminating three different classes of antibiotics from each other via the quenching or enhancement of the luminescence and tuning the emission intensity ratio between the H4L ligand and the Tb3+ center for the first time. Simultaneously, 1a is a ratiometric luminescent sensor for the rapid, accurate, and quantitative discrimination of D2O from H2O. Furthermore, this complex was successfully used for the effective determination of antibiotics and D2O in real water samples. This work indicates that 1a represents the first ever MOF material for the discriminative sensing of antibiotics and D2O in H2O and promotes the practical application of Ln-MOF-based ratiometric luminescent sensors in monitoring water quality and avoiding any major leak situation.


Assuntos
Antibacterianos/análise , Óxido de Deutério/química , Substâncias Luminescentes/química , Térbio/química , Antibacterianos/química , Limite de Detecção , Estruturas Metalorgânicas/química , Porosidade , Fatores de Tempo
17.
Dalton Trans ; 50(21): 7409-7416, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969851

RESUMO

In this work, inspired by a water-assisted three-dimensional supramolecular structure 1, we use a mixed-ligand strategy to form a 3D pillared-layered matrix by the introduction of linear ligands to compete against the water molecules. The resulting analogue microporous MOFs of 2-H, 2-F and 2-N, decorated with different functional groups, similarly show the CO2 uptake. Thanks to the negligible N2 adsorption capacity, enhanced selective adsorption towards CO2 is achieved in compound 2-N. That is, we present here an alternative plan for the high CO2 selective adsorption performance. In addition, the structure stability and moderate affinity for CO2 of these microporous MOFs endow them with excellent reusability.

18.
Toxicol Ind Health ; 36(3): 170-180, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32539645

RESUMO

Although the growing development and application of iron oxide nanoparticles (IONPs) may pose exposure risk and adverse health outcomes, biological changes due to occupational exposure remain unexplored. This cross-sectional study recruited 23 workers at a plant that manufactures IONPs and 23 age- and sex-matched controls without metal-rich occupational hazards exposure. Exposure metrics at worksites were monitored, and iron status, oxidation markers, and methylation profiles of genomic DNA in peripheral blood were measured using corresponding enzyme-linked immunosorbent assays and methylation-specific polymerase chain reaction (PCR), respectively. The mass concentration, number counting, and surface area concentration of airborne particles at the worksite significantly increased during the work process of manufacturing/handling IONPs. Overall, compared to controls, workers exhibited increased 5-hydroxymethylcytosine (5hmC) levels without changes in 5-methylcytosine (5mC), hepcidin methylation, iron, soluble transferrin receptor (sTfR), ferritin, hepcidin, 8-hydroxydeoxyguanosine, and glutathione. A positive correlation was found between 5hmC and IONP exposure year with adjustment for age, sex, and cotinine using partial correlation analyses (r = 0.521, p < 0.001). After stratification of INOPs exposure and 5hmC levels, the univariate general linear model with adjustment for age, sex, and cotinine found that the estimated mean levels of 5mC and sTfR in subjects with low and high 5hmC levels among controls were 11% and 14.4% (p ≤ 0.01) and 80.9 nM and 70.3 nM (p < 0.05), respectively. The estimated mean levels of sTfR in workers and controls with low 5hmC levels were 88.3 nM and 68.7 nM (p ≤ 0.01). Multivariate linear regression analyses suggested an association between sTfR and 5hmC (standardized ß = -0.420, p = 0.014) and female sex (standardized ß = 0.672, p < 0.001) for subjects with low 5hmC levels. These findings suggest that increased 5hmC could be differentially employed to monitor an epigenetic signature with steady iron homeostasis for occupational IONP-exposed individuals who are likely to experience early but specific decreased sTfR, especially for females concurrent with the onset of increment in 5hmC at low level.


Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/sangue , Metilação de DNA/efeitos dos fármacos , Compostos Férricos/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Adulto , Estudos Transversais , Feminino , Humanos , Ferro , Masculino , Nanopartículas Metálicas , Pessoa de Meia-Idade
19.
Inorg Chem ; 59(7): 5093-5098, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32159337

RESUMO

New metal-organic frameworks (MOFs) based on flexible tetra-carboxylate ligands and Cu(II) are designed to gain stimuli-responsive materials. Unstable MOFs can be more stable with unabated flexibility by replacing coordinated solvent molecules with auxiliary N-based ligands. Two of them are intensively studied by in situ single-crystal X-ray diffraction (SCXRD) analysis and the unit cell parameters during transformations have been observed in detail. They undergo exceptional structural transformations which can be divided into two processes: the thermal-responsive phase transition and the solvent-responsive phase transition. The thermal-responsive phase transition takes place in a narrow temperature interval reversibly. However, the solvent-responsive phase transition is a gradual and irreversible process. The stimuli-responsive mechanism has also been explored by comparing the parameters of the crystal structures under different temperatures. Fascinatingly, their exceptional structural transformations correlate with the flexibility of the ligand fragments and the [Cu2(RCOO)4] clusters.

20.
Inorg Chem ; 58(13): 8396-8407, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179695

RESUMO

Through solvothermal reaction of InCl3 and tetracarboxylate ligands with different substituent groups on diphenyl ethers, three new anionic indium-organic frameworks have been successfully prepared. They are {[(CH3)2NH2]In(G-1)(H2O)}·9DMF (1), {[(CH3)2NH2]In(G-2)}·15DMF (2), and {[(CH3)2NH2]2In2(G-3)2}·16DMF (3) {DMF = N, N'-dimethylformamide; H4(G-1) = 5',5″″-oxybis(2'-methoxy[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid); H4(G-2) = 5',5″″-oxybis(2'-amino[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid); H4(G-3) = 5',5″″-oxybis([1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid)}. Compounds 1-3 can be simplified as unimodal 4-connected frameworks with different topological types: lon, cag, and dia, respectively. Compounds 1 and 3 display 2-fold interpenetrating nets, while compound 2 is non-interpenetrating. Compounds 1 and 3 can adsorb cationic methylene blue (MB) with good capacity and a high adsorption rate due to their anionic frameworks and channel-type voids. In particular, compound 1 exhibits great selectivity for cationic MB in the mixtures of MB and methyl orange. In addition, the adsorption behavior of rare earth ions (Eu3+ and Tb3+) on compounds 1 and 3 has also been studied. Due to the different structural features and channel sizes of compounds 1 and 3 caused by different substituents on the ligands, the adsorption properties of rare earth ions on the two compounds are different.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...